Optimizing the Latent Space of Generative Networks

نویسندگان

  • Piotr Bojanowski
  • Armand Joulin
  • David Lopez-Paz
  • Arthur Szlam
چکیده

Generative Adversarial Networks (GANs) have been shown to be able to sample impressively realistic images. GAN training consists of a saddle point optimization problem that can be thought of as an adversarial game between a generator which produces the images, and a discriminator, which judges if the images are real. Both the generator and the discriminator are commonly parametrized as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of the optimization procedure and the network parametrization to the success of GANs. To this end we introduce and study Generative Latent Optimization (GLO), a framework to train a generator without the need to learn a discriminator, thus avoiding challenging adversarial optimization problems. We show experimentally that GLO enjoys many of the desirable properties of GANs: learning from large data, synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning latent structure in complex networks

Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives such as the Modularity, it has recently been shown that latent structure in complex networks is learnabl...

متن کامل

Adversarial Feature Learning

The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing generators learn to “linearize semantics” in the latent space of such models. Intuitively, such latent spaces may serve as useful feature representation...

متن کامل

Inverting The Generator Of A Generative Adversarial Network

Generative adversarial networks (GANs) learn to synthesise new samples from a high-dimensional distribution by passing samples drawn from a latent space through a generative network. When the high-dimensional distribution describes images of a particular data set, the network should learn to generate visually similar image samples for latent variables that are close to each other in the latent ...

متن کامل

Inverting The Generator Of A Generative Adversarial Network (II)

Generative adversarial networks (GANs) learn a deep generative model that is able to synthesise novel, highdimensional data samples. New data samples are synthesised by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties, that may be useful for down stream tasks such as classification or ret...

متن کامل

Metrics for Deep Generative Models

Neural samplers such as variational autoencoders (VAEs) or generative adversarial networks (GANs) approximate distributions by transforming samples from a simple random source—the latent space—to samples from a more complex distribution represented by a dataset. While the manifold hypothesis implies that the density induced by a dataset contains large regions of low density, the training criter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.05776  شماره 

صفحات  -

تاریخ انتشار 2017